

django-postgres

Adds first-class support for PostgreSQL [http://www.postgresql.org/]
features to the Django ORM.

Planned features include:

	Arrays [http://www.postgresql.org/docs/9.1/static/arrays.html]

	Enums [http://www.postgresql.org/docs/9.1/static/datatype-enum.html]

	Bit Strings [http://www.postgresql.org/docs/9.1/static/datatype-bit.html]

	Constraints [http://www.postgresql.org/docs/9.1/static/ddl-constraints.html]

	Triggers [http://www.postgresql.org/docs/9.1/static/sql-createtrigger.html]

	Domains [http://www.postgresql.org/docs/9.1/static/sql-createdomain.html]

	Composite Types [http://www.postgresql.org/docs/9.1/static/rowtypes.html]

	Views [http://www.postgresql.org/docs/9.1/static/sql-createview.html]

Obviously this is quite a large project, but I think it would provide a huge
amount of value to Django developers.

Why?

PostgreSQL is an excellent data store, with a host of useful and
efficiently-implemented features. Unfortunately these features are not exposed
through Django’s ORM, primarily because the framework has to support several
SQL backends and so can only provide a set of features common to all of them.

The features made available here replace some of the following practices:

	Manual denormalization on save() (such that model saves may result in
three or more separate queries).

	Sequences represented by a one-to-many, with an order integer field.

	Complex types represented by JSON in a text field.

Contents

This is a WIP, so the following list may grow and change over time.

	Views
	Quickstart

	View

	Primary Keys

	Creating the Views

	Migrations

	Bit Strings
	Quickstart

	Bit String Fields

	Bit String Expressions

Indices and tables

	Index

	Module Index

	Search Page

Views

For more info on Postgres views, see the official Postgres docs [http://www.postgresql.org/docs/9.1/static/sql-createview.html]. Effectively,
views are named queries which can be accessed as if they were regular database
tables.

Quickstart

Given the following view in SQL:

CREATE OR REPLACE VIEW myapp_viewname AS
SELECT * FROM myapp_table WHERE condition;

You can create this view by just subclassing django_postgres.View. In
myapp/models.py:

import django_postgres

class ViewName(django_postgres.View):
 projection = ['myapp.Table.*']
 sql = """SELECT * FROM myapp_table WHERE condition"""

View

	
class django_postgres.View

	Inherit from this class to define and interact with your database views.

You need to either define the field types manually (using standard Django
model fields), or use projection to copy field definitions from other
models.

	
sql

	The SQL for this view (typically a SELECT query). This attribute is
optional, but if present, the view will be created on sync_pgviews
(which is probably what you want).

	
projection

	A list of field specifiers which will be automatically copied to this view.
If your view directly presents fields from another table, you can
effectively ‘import’ those here, like so:

projection = ['auth.User.username', 'auth.User.password',
 'admin.LogEntry.change_message']

If your view represents a subset of rows in another table (but the same
columns), you might want to import all the fields from that table, like
so:

projection = ['myapp.Table.*']

Of course you can mix wildcards with normal field specifiers:

projection = ['myapp.Table.*', 'auth.User.username', 'auth.User.email']

Primary Keys

Django requires exactly one field on any relation (view, table, etc.) to be a
primary key. By default it will add an id field to your view, and this will
work fine if you’re using a wildcard projection from another model. If not, you
should do one of three things. Project an id field from a model with a one-to-one
relationship:

class SimpleUser(django_postgres.View):
 projection = ['auth.User.id', 'auth.User.username', 'auth.User.password']
 sql = """SELECT id, username, password, FROM auth_user;"""

Explicitly define a field on your view with primary_key=True:

class SimpleUser(django_postgres.View):
 projection = ['auth.User.password']
 sql = """SELECT username, password, FROM auth_user;"""
 # max_length doesn't matter here, but Django needs something.
 username = models.CharField(max_length=1, primary_key=True)

Or add an id column to your view’s SQL query (this example uses
window functions [http://www.postgresql.org/docs/9.1/static/functions-window.html]):

class SimpleUser(django_postgres.View):
 projection = ['auth.User.username', 'auth.User.password']
 sql = """SELECT username, password, row_number() OVER () AS id
 FROM auth_user;"""

Creating the Views

Creating the views is simple. Just run the sync_pgviews command:

$./manage.py sync_pgviews
Creating views for django.contrib.auth.models
Creating views for django.contrib.contenttypes.models
Creating views for myapp.models
myapp.models.Superusers (myapp_superusers): created
myapp.models.SimpleUser (myapp_simpleuser): created
myapp.models.Staffness (myapp_staffness): created

Migrations

Views play well with South migrations. If a migration modifies the underlying
table(s) that a view depends on so as to break the view, that view will be
silently deleted by Postgres. For this reason, it’s important to run
sync_pgviews after migrate to ensure any required tables have been
created/updated.

Bit Strings

Postgres has a bit string [http://www.postgresql.org/docs/9.1/static/arrays.html] type, which is exposed by django-postgres as
BitStringField and the
BitStringExpression helper (aliased as
django_postgres.B). The representation of bit strings in Python is handled
by the python-bitstring [http://packages.python.org/bitstring] library (a dependency of django-postgres).

Quickstart

Given the following models.py:

from django.db import models
import django_postgres

class BloomFilter(models.Model):
 name = models.CharField(max_length=100)
 bitmap = django_postgres.BitStringField(max_length=8)

You can create objects with bit strings, and update them like so:

>>> from django_postgres import Bits
>>> from models import BloomFilter

>>> bloom = BloomFilter.objects.create(name='test')
INSERT INTO myapp_bloomfilter
 (name, bitmap) VALUES ('test', B'00000000')
 RETURNING myapp_bloomfilter.id;

>>> print bloom.bitmap
Bits('0x00')
>>> bloom.bitmap |= Bits(bin='00100000')
>>> print bloom.bitmap
Bits('0x20')

>>> bloom.save(force_update=True)
UPDATE myapp_bloomfilter SET bitmap = B'00100000'
 WHERE myapp_bloomfilter.id = 1;

Several query lookups are defined for filtering on bit strings. Standard
equality:

>>> BloomFilter.objects.filter(bitmap='00100000')
SELECT * FROM myapp_bloomfilter WHERE bitmap = B'00100000';

You can also test against bitwise comparison operators (and, or and
xor). The SQL produced is slightly convoluted, due to the few functions
provided by Postgres:

>>> BloomFilter.objects.filter(bitmap__and='00010000')
SELECT * FROM myapp_bloomfilter WHERE position(B'1' IN bitmap & B'00010000') > 0
>>> BloomFilter.objects.filter(bitmap__or='00010000')
SELECT * FROM myapp_bloomfilter WHERE position(B'1' IN bitmap | B'00010000') > 0
>>> BloomFilter.objects.filter(bitmap__xor='00010000')
SELECT * FROM myapp_bloomfilter WHERE position(B'1' IN bitmap # B'00010000') > 0

Finally, you can also test the zero-ness of left- and right-shifted bit
strings:

>>> BloomFilter.objects.filter(bitmap__lshift=3)
SELECT * FROM myapp_bloomfilter WHERE position(B'1' IN bitmap << 3) > 0
>>> BloomFilter.objects.filter(bitmap__rshift=3)
SELECT * FROM myapp_bloomfilter WHERE position(B'1' IN bitmap >> 3) > 0

Bit String Fields

	
class django_postgres.BitStringField(max_length=1[, varying=False, ...])

	A bit string field, represented by the Postgres BIT or VARBIT types.

	Parameters:	
	max_length – The length (in bits) of this field.

	varying – Use a VARBIT instead of BIT. Not recommended; it may cause strange
querying behavior or length mismatch errors.

If varying is True and max_length is None, a VARBIT of
unlimited length will be created.

The default value of a BitStringField is chosen as follows:

	If a default kwarg is provided, that value is used.

	Otherwise, if null=True, the default value is None.

	Otherwise, if the field is not a VARBIT, it defaults to an all-zero
bit string of max_length (remember, the default length is 1).

	Finally, all other cases will default to a single 0.

All other parameters (db_column, help_text, etc.) behave as standard
for a Django field.

Bit String Expressions

It’s useful to be able to atomically modify bit strings in the database, in a
manner similar to Django’s F-expressions [https://docs.djangoproject.com/en/dev/topics/db/queries/#query-expressions].
For this reason, BitStringExpression is provided,
and aliased as django_postgres.B for convenience.

Here’s a short example:

>>> from django_postgres import B
>>> BloomFilter.objects.filter(id=1).update(bitmap=B('bitmap') | '00001000')
UPDATE myapp_bloomfilter SET bitmap = bitmap | B'00001000'
 WHERE myapp_bloomfilter.id = 1;
>>> bloom = BloomFilter.objects.get(id=1)
>>> print bloom.bitmap
Bits('0x28')

	
class django_postgres.BitStringExpression(field_name)

	The following operators are supported:

	Concatenation (+)

	Bitwise AND (&)

	Bitwise OR (|)

	Bitwise XOR (^)

	(Unary) bitwise NOT (~)

	Bitwise left-shift (<<)

	Bitwise right-shift (>>)

Index

 D
 | P
 | S

D

 	
 	django_postgres.BitStringExpression (built-in class)

 	
 	django_postgres.BitStringField (built-in class)

 	django_postgres.View (built-in class)

P

 	
 	projection (django_postgres.View attribute)

S

 	
 	sql (django_postgres.View attribute)

 nav.xhtml

 Table of Contents

 		django-postgres

 		Views

 		Quickstart

 		View

 		Primary Keys

 		Creating the Views

 		Migrations

 		Bit Strings

 		Quickstart

 		Bit String Fields

 		Bit String Expressions

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

